OANDP-L
  • Login
No Result
View All Result
The O&P EDGE
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
    • EDGE Flipbooks
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
    • EA Homepage
    • EA Data
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
    • EDGE Flipbooks
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
    • EA Homepage
    • EA Data
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
No Result
View All Result
The O&P EDGE Magazine
No Result
View All Result
Home News

Scientists Test New BMI Designed to Control Exoskeletons

by The O&P EDGE
February 11, 2016
in News
0
SHARES
3
VIEWS
Share on FacebookShare on Twitter

The device is implanted into a blood vessel next to the brain and can read electrical signals from the motor cortex.
Photograph courtesy of the University of Melbourne.

Researchers have developed what they say is the world’s first minimally invasive brain-machine interface (BMI) that, once implanted within a blood vessel in the brain, has been shown to allow users to control an exoskeleton or bionic limbs with the power of thought. The BMI, which is the size of a paperclip, consists of a stent-based electrode (stentrode) that is crafted from an alloy called nitinol. The results of the initial study, published online February 8 in Nature Biotechnology, show the device is capable of recording high-quality signals emitted from the brain’s motor cortex without the need for open brain surgery. The stentrode will be inserted into the blood vessel with a catheter fed up through the groin-the same approach that has been used for years for cardiology and removing stroke clots.

“Our vision, through this device, is to return function and mobility to patients with complete paralysis by recording brain activity and converting the acquired signals into electrical commands, which in turn would lead to movement of the limbs through a mobility assist device like an exoskeleton. In essence, this is a bionic spinal cord,” said Thomas Oxley, MD, PhD, principal author and neurologist at The Royal Melbourne Hospital, Parkville, Australia; and research fellow at The Florey Institute of Neuroscience and Mental Health (The Florey), Melbourne, Australia, and the University of Melbourne. Oxley is currently based at Mount Sinai Hospital, New York.

Co-principal investigator and biomedical engineer at the University of Melbourne, Nicholas Opie, PhD, said the concept was similar to an implantable cardiac pacemaker-electrical interaction with tissue using sensors inserted into a vein, but inside the brain. “Utilizing stent technology, our electrode array self-expands to stick to the inside wall of a vein, enabling us to record local brain activity,” said Opie. “By extracting the recorded neural signals, we can use these as commands to control wheelchairs, exoskeletons, prosthetic limbs, or computers.”

Clive May, PhD, neurophysiologist at The Florey, said the data from the preclinical study showed that the implantation of the device was safe for long-term use. “Through our preclinical study we were able to successfully record brain activity over many months,” said May. “The quality of recording improved as the device was incorporated into tissue.”

The stentrode will be implanted in the first in-human trial in 2017 at The Royal Melbourne Hospital; the first patients will most likely be young people who have suffered a traumatic spinal cord injury around six months to a year earlier, who are suitable for exoskeleton legs. The research team said it hopes to achieve direct brain control of an exoskeleton by the study cohort.

Editor’s note: This story was adapted from materials provided by the University of Melbourne.

Related posts:

  1. I, ROBOT
  2. BCI Devices Open Doors for People with Disabilities
  3. Less-Invasive Brain Electrodes Successful
  4. BCI System Reaches 1,000-Day Performance Milestone
Previous Post

Breaking News From NAAOP: Three New Developments Impact the O&P Community

Next Post

Hanger Requests Fourth Modification of Credit Agreement

Next Post

Hanger Requests Fourth Modification of Credit Agreement

 SUBSCRIBE FOR FREE

 

Get unlimited access!

Join EDGE ADVANTAGE and unlock The O&P EDGE's vast library of archived content.
SUBSCRIBE TODAY

O&P JOBS

Eastern

Prosthetic and Orthotic Lab Fabrication Coordinator & Tech – Full Time

Eastern

Seeking Prosthetic Technician in New York

Central

CPOs or Board-Eligible 

Linkedin X-twitter Facebook
The O&P EDGE Magazine
 
Required 'Candidate' login to applying this job. Click here to logout And try again
 

Login to your account

  • Forgot Password?

Reset Password

  • Already have an account? Login

Enter the username or e-mail you used in your profile. A password reset link will be sent to you by email.

Close
No Result
View All Result
  • PECOS
  • MAGAZINE
    • SUBSCRIBE
    • CURRENT ISSUE
    • ISSUE ARCHIVE
    • NEWS ARCHIVE
    • PRODUCTS & SERVICES DIRECTORY
    • ADVERTISING INFORMATION
  • O&P JOBS
    • FIND A JOB
    • POST A JOB
  • EDGE ADVANTAGE
    • EA Homepage
    • EA Data
  • FACILITIES
  • RESOURCES
    • PRODUCTS & SERVICES DIRECTORY
    • CALENDAR
    • CONTACT
    • ABOUT US
    • O&P LIBRARY
    • THE GUIDE
    • CUSTOM PUBLICATIONS
    • ADVERTISING INFORMATION
    • EDGE DIRECT
    • AMPLITUDE
  • OANDP-L
  • LOGIN

© 2025 The O&P EDGE

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
 

Account Activation

Before you can login, you must activate your account with the code sent to your email address. If you did not receive this email, please check your junk/spam folder. Click here to resend the activation email. If you entered an incorrect email address, you will need to re-register with the correct email address.

 

© 2024 The O&P EDGE

  • About
  • Advertise
  • Contact
  • EDGE Advantage
  • OANDP-L
  • Subscribe

CONTACT US

866-613-0257

info@opedge.com

201 E. 4th St.
Loveland, CO 80537

The most important industry news and events delivered directly to your inbox every week.

  • About
  • Advertise
  • Contact
  • EDGE Advantage
  • OANDP-L
  • Subscribe

© 2025 The O&P EDGE

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
The O&P EDGE Magazine
 
Required 'Candidate' login to applying this job. Click here to logout And try again
 

Login to your account

  • Forgot Password?

Reset Password

  • Already have an account? Login

Enter the username or e-mail you used in your profile. A password reset link will be sent to you by email.

Close
No Result
View All Result
  • PECOS
  • MAGAZINE
    • SUBSCRIBE
    • CURRENT ISSUE
    • ISSUE ARCHIVE
    • NEWS ARCHIVE
    • PRODUCTS & SERVICES DIRECTORY
    • ADVERTISING INFORMATION
  • O&P JOBS
    • FIND A JOB
    • POST A JOB
  • EDGE ADVANTAGE
    • EA Homepage
    • EA Data
  • FACILITIES
  • RESOURCES
    • PRODUCTS & SERVICES DIRECTORY
    • CALENDAR
    • CONTACT
    • ABOUT US
    • O&P LIBRARY
    • THE GUIDE
    • CUSTOM PUBLICATIONS
    • ADVERTISING INFORMATION
    • EDGE DIRECT
    • AMPLITUDE
  • OANDP-L
  • LOGIN

© 2025 The O&P EDGE

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
 

Account Activation

Before you can login, you must activate your account with the code sent to your email address. If you did not receive this email, please check your junk/spam folder. Click here to resend the activation email. If you entered an incorrect email address, you will need to re-register with the correct email address.