Tuesday, January 31, 2023
OANDP-L
  • Login
No Result
View All Result
The O&P EDGE
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
No Result
View All Result
The O&P EDGE Magazine
No Result
View All Result
Home News

Supercomputer Replicates Brain Circuitry to Direct a Prosthetic Arm

by The O&P EDGE
May 19, 2017
in News
0
SHARES
5
VIEWS
Share on FacebookShare on Twitter

By applying a novel computer algorithm to mimic how the brain learns, a team of researchers—with the aid of the Comet supercomputer based at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego (UCSD), and the SDSC’s Neuroscience Gateway—has identified and replicated neural circuitry that resembles the way an unimpaired brain controls limb movement. The research, published in the March-May 2017 issue of the IBM Journal of Research and Development, lays the groundwork to develop realistic “biomimetic neuroprosthetics”—brain implants that replicate brain circuits and their function—that one day could replace lost or damaged brain cells or tissue from tumors, stroke, or other diseases.

“In patients with motor paralysis, the biomimetic neuroprosthetic could be used to replace the deteriorated motor cortex where it could interact directly with healthy brain premotor regions, and send commands and receive feedback via the spinal cord to a prosthetic arm,” said W.W. Lytton, MD, a professor of physiology and pharmacology at State University of New York (SUNY) Downstate Medical Center (Downstate), Brooklyn, New York, and the study’s principal investigator.

The researchers relied on several concepts inspired by biology to create a more realistic artificial neural network that allows the motor cortex to learn to direct a virtual arm—consisting of eight bones, seven joints, and 14 muscle branches—to a specified target. The biomimetic model in question involved more than 8,000 spiking neurons and about 500,000 synaptic connections. The main component consisted of primary motor cortex microcircuits based on brain activity mapping, connected to a circuitry model of the spinal cord and the virtual arm.

“We argue that for the model to respond in a biophysiologically realistic manner to ongoing dynamic inputs from the real brain, it needs to reproduce as closely as possible the structure and function or actual cortical cells and microcircuits,” said Salvador Dura-Bernal, PhD, a research assistant professor in physiology and pharmacology with Downstate and the paper’s first author.

The researchers trained their model using spike-timing dependent plasticity (STDP) and reinforcement learning. The process refers to the ability of synaptic connections to become stronger based on when they are activated in relation to each other, meshed with a system of biochemical rewards or punishments that are tied to correct or incorrect decisions. In this case, the reward signal is based on the computer model’s ability to control how close a virtual hand comes to a target. If the hand got close to the target, synapses generating that movement were rewarded; if the hand was further away, those synapses were punished.

Future studies will focus on developing more realistic models of the primary motor cortex microcircuits to help understand and decipher how information is encoded and transmitted in the brain.

Editor’s note: This story was adapted from materials provided by UCSD.

 

Overview of biomimetic neuroprosthetic system. Left to right: Information about what target to reach can be gathered from electrodes in the brain. This modulates ongoing activity in the biomimetic cortical and spinal cord models that then drives the virtual arm, which is then mirrored by the robot arm. Right to left: Haptic feedback could then be delivered back in the other direction so that the user could feel what is being touched. Reproduced with permission from Dura-Bernal et al. 2017 (IBM Journal of Research and Development).

 

Subscribe

Gain unlimited access to every O&P EDGE article ever published, more than 15 years of archived editorial content
Subscribe Now

Related posts:

  1. Examining the Uses of Virtual Reality in Prosthetic Rehabilitation
  2. Cognitive Engagement of the Prosthetic Hand
  3. DARPA’S RP Arms Progress, Nurture Related Wonders
  4. Less-Invasive Brain Electrodes Successful
Previous Post

Jurisdiction D Posts Prepayment Review Quarterly Results for L-0631, L-0637

Next Post

Shoe Choice Can Affect Prosthetic Foot Characteristics

Next Post

Shoe Choice Can Affect Prosthetic Foot Characteristics

  • VIEW CURRENT ISSUE
  • SUBSCRIBE FOR FREE

RECENT NEWS

News

Corrected Dates for PrimeFare Central

by The O&P EDGE
January 24, 2023

PrimeCare Management Services announced that due to a printer’s error a recent mail campaign had incorrect dates for the PrimeFare...

Read more

Kenney Orthopedics Joins Limb Loss & Preservation Registry

Prosthesis Type Affects Quality of Life

Prosthesis Associated With Survival After Vascular-related Amputation

Get unlimited access!

Join EDGE ADVANTAGE and unlock The O&P EDGE's vast library of archived content.
SUBSCRIBE TODAY

O&P JOBS

Central

Certified Prosthetist/Orthotists

Central

Part-Time Prosthetic Practitioner in Oklahoma

Central

ABC Certified Orthotist /Prosthetist II

 

© 2021 The O&P EDGE

  • About
  • Advertise
  • Contact
  • EDGE Advantage
  • OANDP-L
  • Subscribe

CONTACT US

866-613-0257

[email protected]

201 E. 4th St
Loveland, CO 80537

The most important industry news and events delivered directly to your inbox every week.

No Result
View All Result
  • PECOS
  • MAGAZINE
    • SUBSCRIBE
    • CURRENT ISSUE
    • ISSUE ARCHIVE
    • NEWS ARCHIVE
    • PRODUCTS & SERVICES DIRECTORY
    • ADVERTISING INFORMATION
  • O&P JOBS
    • FIND A JOB
    • POST A JOB
  • EDGE ADVANTAGE
  • FACILITES
  • RESOURCES
    • PRODUCTS & SERVICES DIRECTORY
    • CALENDAR
    • CONTACT
    • ABOUT US
    • O&P LIBRARY
    • THE GUIDE
    • CUSTOM PUBLICATIONS
    • ADVERTISING
    • EDGE DIRECT
    • AMPLITUDE
  • OANDP-L
  • LOGIN

© 2021The O&P EDGE

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
The O&P EDGE Magazine
 
Required 'Candidate' login to applying this job. Click here to logout And try again
 

Login to your account

  • Forgot Password? | Sign Up

Reset Password

  • Already have an account? Login

Enter the username or e-mail you used in your profile. A password reset link will be sent to you by email.

Signup to your Account

  • By clicking checkbox, you agree to our Terms and Conditions and Privacy Policy

    Already have an account? Login

Close
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
 

Account Activation

Before you can login, you must activate your account with the code sent to your email address. If you did not receive this email, please check your junk/spam folder. Click here to resend the activation email. If you entered an incorrect email address, you will need to re-register with the correct email address.