OANDP-L
  • Login
No Result
View All Result
The O&P EDGE
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
    • EDGE Flipbooks
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
    • EA Homepage
    • EA Data
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
  • PECOS
  • Magazine
    • Subscription
    • Current Issue
    • Issue Archive
    • News Archive
    • Product & Service Directory
    • Advertising Information
    • EDGE Flipbooks
  • O&P Jobs
    • Find a Job
    • Post a Job
  • EDGE Advantage
    • EA Homepage
    • EA Data
  • O&P Facilities
  • Resources
    • Product & Service Directory
    • Calendar
    • Contact
    • About Us
    • O&P Library
    • The Guide
    • Custom Publications
    • Advertising Information
    • EDGE Direct
    • Amplitude Media Group
No Result
View All Result
The O&P EDGE Magazine
No Result
View All Result
Home News

Nanomodified Surfaces Seal Leg Implants Against Infection

by The O&P EDGE
March 28, 2011
in News
0
SHARES
10
VIEWS
Share on FacebookShare on Twitter

Researchers at Brown University (Brown), Providence, Rhode Island, have created nanoscale surfaces for implanted materials that mimic the contours of natural skin, according to a university press release. The surfaces attract skin cells that, over time, are shown to build a natural seal against bacterial invasion. The group also created a molecular chain that allows an implant surface to be covered with skin cell-growing proteins, further accelerating skin growth. The findings have implications for implantable prostheses, for which the risk of infection at the skin/implant interface has been of concern. The results are published in the April 2011 Journal of Biomedical Materials Research A.


Nanotubular surfaces. Anodizing the titanium surface of a surgical implant, left, yields a roughened surface of nanotubes, which skin cells then colonize more quickly. Photograph courtesy of Webster Lab/Brown University.

“You need to close (the area) where the bacteria would enter the body, and that’s where the skin is,” said Thomas Webster, PhD, associate professor of engineering and orthopedic surgery at Brown.

Webster and the Brown research team report two ways in which they modified the surface of titanium leg implants to promote skin-cell growth, thereby creating a natural skin layer and sealing the gap where the device has been implanted into the body. The researchers also created a molecular chain to sprinkle skin-growing proteins on the implant to hasten skin growth.

The researchers, including Melanie Zile, a Boston University student who worked in Webster’s lab as part of Brown’s Undergraduate Teaching and Research Awards program, and Sabrina Puckett, PhD, who earned her engineering doctorate last May, created two different surfaces at the nanoscale, dimensions less than a billionth of a meter.

In the first approach, scientists fired an electron beam of titanium coating at the abutment (the piece of the implant inserted into the bone), creating a landscape of 20-nanometer mounds. These mounds imitate the contours of natural skin and trick skin cells into colonizing the surface and growing additional keratinocytes, or skin cells.

Webster knew such a surface, roughened at the nanoscale, worked for regrowing bone cells and cartilage cells, but was unsure whether it would be successful at growing skin cells. This may be the first time that a nanosurface created this way on titanium has been shown to attract skin cells.

The second approach, called anodization, involved dipping the abutment into hydrofluoric acid and then giving it a jolt of electric current. This causes the titanium atoms on the abutment’s surface to scatter and then regroup as hollow, tubular structures rising perpendicularly from the abutment’s surface. As with the nanomounds, skin cells quickly colonize the nanotubular surface.

In laboratory (in vitro) tests, the researchers report nearly a doubling of skin-cell density on the implant surface; within five days, the keratinocyte density reached the point at which an impermeable skin layer bridging the abutment and the body had been created.

“You definitely have a complete layer of skin,” Webster said. “There’s no more gap for the bacteria to go through.”

To further promote skin-cell growth around the implant, Webster’s team looked to FGF-2, a protein secreted by the skin to enhance skin cell growth. Researchers came up with a synthetic molecular chain to bind FGF-2 to the titanium surface, while maintaining the protein’s skin-cell growing ability. In vitro tests showed the greatest density of skin cells on abutment surfaces using the nanomodified surfaces laced with FGF-2. Moreover, the nanomodified surfaces create more surface area for FGF-2 proteins than would be available on traditional implants.

The next step is to perform in vivo studies; if they are successful, human trials could begin, although Webster said that could be years away.

The U.S. Department of Veterans Affairs and the U.S. National Science Foundation funded the research.


Editor’s note: This story has been adapted from materials provided by Brown University.

Related posts:

  1. SURGICAL SOLUTIONS, TECHNIQUES, AND TRENDS Osseointegration: Infection Solutions
  2. Osseointegration: In the Wave of the Future?
  3. PLX-PAD: Stem Cell Treatment May Save Limbs
  4. Researchers Discover Way to Boost Cancer-Killing Cells
Previous Post

OPAF Receives a 2011 Olympic Opportunity Grant

Next Post

Orthotic Management of Low-Tone Children
The Earlier the Better

Next Post

Orthotic Management of Low-Tone Children
The Earlier the Better

 SUBSCRIBE FOR FREE

 

Get unlimited access!

Join EDGE ADVANTAGE and unlock The O&P EDGE's vast library of archived content.
SUBSCRIBE TODAY

O&P JOBS

Eastern

Prosthetic & Orthotic Technician

Mountain

Immediate Opening for a CO/CPO

Eastern

CPO

Linkedin X-twitter Facebook
The O&P EDGE Magazine
 
Required 'Candidate' login to applying this job. Click here to logout And try again
 

Login to your account

  • Forgot Password?

Reset Password

  • Already have an account? Login

Enter the username or e-mail you used in your profile. A password reset link will be sent to you by email.

Close
No Result
View All Result
  • PECOS
  • MAGAZINE
    • SUBSCRIBE
    • CURRENT ISSUE
    • ISSUE ARCHIVE
    • NEWS ARCHIVE
    • PRODUCTS & SERVICES DIRECTORY
    • ADVERTISING INFORMATION
  • O&P JOBS
    • FIND A JOB
    • POST A JOB
  • EDGE ADVANTAGE
    • EA Homepage
    • EA Data
  • FACILITIES
  • RESOURCES
    • PRODUCTS & SERVICES DIRECTORY
    • CALENDAR
    • CONTACT
    • ABOUT US
    • O&P LIBRARY
    • THE GUIDE
    • CUSTOM PUBLICATIONS
    • ADVERTISING INFORMATION
    • EDGE DIRECT
    • AMPLITUDE
  • OANDP-L
  • LOGIN

© 2025 The O&P EDGE

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
 

Account Activation

Before you can login, you must activate your account with the code sent to your email address. If you did not receive this email, please check your junk/spam folder. Click here to resend the activation email. If you entered an incorrect email address, you will need to re-register with the correct email address.

 

© 2024 The O&P EDGE

  • About
  • Advertise
  • Contact
  • EDGE Advantage
  • OANDP-L
  • Subscribe

CONTACT US

866-613-0257

info@opedge.com

201 E. 4th St.
Loveland, CO 80537

The most important industry news and events delivered directly to your inbox every week.

  • About
  • Advertise
  • Contact
  • EDGE Advantage
  • OANDP-L
  • Subscribe

© 2025 The O&P EDGE

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
The O&P EDGE Magazine
 
Required 'Candidate' login to applying this job. Click here to logout And try again
 

Login to your account

  • Forgot Password?

Reset Password

  • Already have an account? Login

Enter the username or e-mail you used in your profile. A password reset link will be sent to you by email.

Close
No Result
View All Result
  • PECOS
  • MAGAZINE
    • SUBSCRIBE
    • CURRENT ISSUE
    • ISSUE ARCHIVE
    • NEWS ARCHIVE
    • PRODUCTS & SERVICES DIRECTORY
    • ADVERTISING INFORMATION
  • O&P JOBS
    • FIND A JOB
    • POST A JOB
  • EDGE ADVANTAGE
    • EA Homepage
    • EA Data
  • FACILITIES
  • RESOURCES
    • PRODUCTS & SERVICES DIRECTORY
    • CALENDAR
    • CONTACT
    • ABOUT US
    • O&P LIBRARY
    • THE GUIDE
    • CUSTOM PUBLICATIONS
    • ADVERTISING INFORMATION
    • EDGE DIRECT
    • AMPLITUDE
  • OANDP-L
  • LOGIN

© 2025 The O&P EDGE

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
 

Account Activation

Before you can login, you must activate your account with the code sent to your email address. If you did not receive this email, please check your junk/spam folder. Click here to resend the activation email. If you entered an incorrect email address, you will need to re-register with the correct email address.